ON A FAMLY OF PERIODIC MOTIONS OF A HEAVY SOLID WITH A FIXED PONTT

PMM Vol. 41, № 3, 1977, pp. 553-556

E. A. VAGNER
(Alma-Ata)
(Received February 19, 1976)

The equation of motion of a heavy solid with a fixed point is transformed, using isothermal coordinates on the inertia ellipsoid, to the equations of plane motion of a fictitious material point. The Poincaré method of small parameter is used to prove the existence of a new family of periodic solutions of the problem in question. It is assumed that the solid differs little from a solid with dynamic axial symmetry.

Let us consider the motion of a heavy solid about a fixed point. We denote by p, q, and r the projections of the angular velocity of the body on the principal axes of inertia; α, β, and y are the direction cosines of the vertical; A, B and C are the principal moments of inertia; a, b, and c are the coordinates of the center of gravity in the moving coordinate system. The Lagrangian

$$
\begin{equation*}
L=1 / 2\left(A p^{2}+B q^{2}+C r^{2}\right)-m g(a \alpha+b \beta+c \gamma) \tag{1}
\end{equation*}
$$

of the problem does not contain the angle of precession ψ, and this makes it possible to transform the equation of motion using the Routh method and a cyclic integral

$$
\partial L / \partial \dot{\phi}^{*}=A \alpha\left(\psi^{\cdot} \alpha+\theta^{\prime} \cos \varphi\right)+B \beta\left(\psi^{*} \beta-\theta^{\cdot} \sin \varphi\right)+C \gamma^{\prime}\left(\psi^{\cdot} \gamma+\varphi^{*}\right)=f
$$

Here f is an arbitrary constant, φ and θ are the angles of self-rotation and nutation, respectively.

The Routh function can be written in the present case in the form [1]

$$
\begin{aligned}
& R-R_{2}+R_{1}+R_{0} \\
& R_{2}=\frac{1}{2} D\left\{\varphi^{*} C\left(A \alpha^{2}+B \beta^{2}\right)-2 \varphi^{*} \theta^{\circ} C \gamma(A \alpha \cos \varphi-B \beta \sin \varphi)+\right. \\
&\left.\theta^{2}\left[\frac{1}{D}\left(A \cos ^{2} \varphi+B \sin ^{2} \varphi\right)-(A \alpha \cos \varphi-B \beta \sin \varphi)^{2}\right]\right\} \\
& R_{1}=f D\left[\varphi^{\circ} C \gamma+\theta^{\cdot}(A \alpha \cos \varphi-B \beta \sin \varphi)\right] \\
& R_{0}=-m g(a \alpha+b \beta+c \gamma)-1 / 22^{2} D
\end{aligned}
$$

where $\sqrt{\bar{D}}$ denotes the disturbance from the fixed point to the tangent plane of the inertia ellipsoid

$$
D^{-1}=A \alpha^{2}+B \beta^{2}+C \gamma^{2}
$$

Next we shall carry out two coordinate transformations, one after the other. First we introduce the isothermal coordinates u and s on the surface of the inertia ellipsoid using the formulas

$$
\varphi=\operatorname{Arctg} \frac{\operatorname{sn} u}{\operatorname{cn} u \operatorname{sn} s}, \quad \theta=\arccos \frac{\operatorname{dn} u \operatorname{cn} s}{\operatorname{dn} s}
$$

in which the modulus of the elliptical functions of the argument u is $k=[(A$ $-B) C /(A-C) B]^{1 / 2} \quad$ and the elliptical functions of the argument s depend on the auxilliary modulus $k^{\prime}=\left(1-k^{2}\right)^{2 / 2}$. The next coordinate transformation is given by the relations

$$
\begin{aligned}
& x=\int_{0}^{u} \mu_{1}(u) d u, \quad y=-\int_{0}^{s} \mu_{2}(s) d s \\
& \mu_{1}{ }^{2}(u)=A \operatorname{sn}^{2} u+B \operatorname{cn}^{2} u, \quad \mu_{2}{ }^{2}(s)=\frac{1}{d^{2} s}\left(A-B{k^{\prime}}^{2} \operatorname{sn}^{2} s\right)
\end{aligned}
$$

The Routh function can be written in the new variables in the form

$$
\begin{aligned}
& R=\frac{1}{2} I\left(x^{2}+y^{2}\right)+\frac{f}{\Lambda M} \frac{v_{1}(u) \lambda_{2}(s)}{\mu_{1}(u)} x^{\cdot}+\frac{f}{\Lambda M} \frac{v_{2}(s) \lambda_{1}(u)}{\mu_{2}(s)} y^{.} \\
& I=\frac{C k}{\Lambda}\left(k^{\prime 2} \frac{\operatorname{sn}^{2} s}{\operatorname{dn}^{2} s}+\operatorname{cn}^{2} u\right), \quad M=1-\operatorname{cn}^{2} u \operatorname{cn}^{2} s \\
& \Lambda=\frac{1}{\operatorname{dn}^{2} s}\left(A k^{2} \operatorname{sn}^{2} u+B k^{2} \mathrm{cn}^{2} u \operatorname{sn}^{2} s+C \operatorname{dn}^{2} u \operatorname{cn}^{2} s\right) \\
& v_{1}(u)=C \operatorname{dn}^{2} u+k^{2}(A-B) \operatorname{sn}^{2} u \operatorname{cn}^{2} u \\
& v_{2}(s)=C \operatorname{cn}^{2} s-k^{2}(A-B) \frac{\operatorname{sn}^{2} s}{\operatorname{dn}^{2} s} \\
& \lambda_{1}(u)=\operatorname{sn} u \operatorname{cn} u \operatorname{dn} u, \quad \lambda_{2}(s)=\operatorname{sn} s \operatorname{cn} s / \operatorname{dn} s
\end{aligned}
$$

Next we transform the equations of motion

$$
\frac{d}{d t}\left(\frac{\partial R}{\partial x^{*}}\right)-\frac{\partial R}{\partial x}=\frac{\partial U}{\partial x}, \quad \frac{d}{d t}\left(\frac{\partial R}{\partial y^{*}}\right)-\frac{\partial R}{\partial y}=\frac{\partial U}{\partial y}
$$

taking into account the kinetic energy integral

$$
\frac{1}{2}\left[\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right]=U+h
$$

in which the function U is defined by the second term of (1) written in the new variables, and h is a constant.

Introducing now a new regularizing variable with the help of the relation $d t=$ $I d \tau$, we obtain the following system of equations of motion

$$
\begin{align*}
& x^{\prime \prime}-f \Omega y^{\prime}=\frac{\partial V}{\partial x}, \quad y^{\prime \prime}+f \Omega x^{\prime}=\frac{\partial V}{\partial y} \tag{2}\\
& \Omega=\frac{1}{\mu_{1}(u) \mu_{2}(s)}\left\{v_{2}(s) \frac{\partial}{\partial u}\left[\frac{\lambda_{1}(u)}{\Lambda M}\right]+v_{1}(u) \frac{\partial}{\partial s}\left[\frac{\lambda_{2}(s)}{\Lambda M}\right]\right\} \\
& V=\frac{I}{k}\left[h-\frac{m g}{\operatorname{dn} s}(a k \operatorname{sn} u+b k \operatorname{cn} u \operatorname{sn} s+c \operatorname{dn} u \operatorname{cn} s)-\frac{f^{2}}{2 \Lambda}\right]
\end{align*}
$$

where prime denotes differentiation with respect to τ.
In this manner we have reduced the equations of motion of a solid to a fourth order system describing the motion of a fictitious material point in a plane, under the action of potential and gyroscopic forces.

The transformed system admits the Jacobi integral

$$
\begin{equation*}
x^{\prime 2}+y^{\prime 2}=2 V \tag{3}
\end{equation*}
$$

Next we prove the existence of and construct the periodic solutions of the system (2), using the Poicaré's small parameter method. Expanding the function Ω into trigonometric series we confirm that it is of the order of k^{2}. Assuming the quantity f to be arbitrary and $\quad \Omega=k^{2} \Omega^{*}$, we can use the Poincare's method to establish the existence of a new family of periodic solutions of the problem using the modulus k as the small parameter [2].

Setting $\quad k=0 \quad$ we obtain from (2) the following simplified system

$$
\begin{align*}
& x_{0}{ }^{\prime \prime}=\frac{\partial V_{0}}{\partial x_{0}}, \quad y_{0}{ }^{\prime \prime}=\frac{\partial V_{0}}{\partial y_{0}} \tag{4}\\
& V_{0}=(h-m g c)\left(\cos ^{2} \frac{x_{0}}{\sqrt{A}}+\operatorname{sh}^{2} \frac{y_{0}}{\sqrt{A}}\right)
\end{align*}
$$

Multiplying both parts of (4) by x_{0}^{\prime} and y_{0}^{\prime} respectively, and integrating, we obtain

$$
\begin{aligned}
& x_{0}^{\prime 2}=2(h-m g c) \cos ^{2} \frac{x_{0}}{\sqrt{A}}+C_{1} \\
& y_{0}^{\prime 2}=2(h-m g c) \operatorname{sh}^{2} \frac{y_{c}}{\sqrt{A}}+C_{2}
\end{aligned}
$$

Here $\quad C_{1}+C_{2}=0, \quad$ which follows from the Jacobi integral (3).
If the arbitrary constants h and C_{1} are restricted by the conditions $h-m g c>0$, and $C_{1}<0$, the system (4) admits the following solution

$$
\begin{aligned}
& \sin \frac{x_{0}}{\sqrt{A}}=x \operatorname{sn}\left(w_{1}, x\right), \quad \operatorname{sh} \frac{y_{0}}{\sqrt{A}}=x^{\prime} \frac{\operatorname{sn}\left(w_{2}, x\right)}{\operatorname{cn}\left(w_{2}, x\right)} \\
& x^{2}=\left(A \sigma^{2}-C_{1}\right) / A \sigma^{2}, \quad \sigma=[2(h-m g c) / A]^{1 / 2} \\
& w_{i}=\sigma\left(\tau-\tau_{i}\right), \quad i=1,2
\end{aligned}
$$

with the period $T=4 \sigma^{-1} K(x)$.
The system of differential equations in its first order approximation

$$
\begin{aligned}
& x_{1}{ }^{\prime \prime}-\frac{2}{A}(h-m g c)\left(\sin ^{2} \frac{x_{0}}{\sqrt{A}}-\cos ^{2} \frac{x_{0}}{\sqrt{A}}\right) x_{1}=f \Omega_{0}{ }^{*} y_{0}^{\prime} \\
& y_{1}^{\prime \prime}-\frac{2}{A}(h-m g c)\left(\operatorname{sh}^{2} \frac{y_{0}}{\sqrt{A}}+\operatorname{ch}^{2} \frac{y_{0}}{\sqrt{A}}\right) y_{1}=-f \Omega_{0}^{*} x_{0}^{\prime}
\end{aligned}
$$

where $\Omega_{0}{ }^{*}$ is the value of the function Ω^{*} at $k=0$ has the solution

$$
x_{1}=x_{0} \cdot\left\{\int \frac{\beta_{1}}{x_{0^{\prime}}{ }^{\prime 2}} d \tau+\beta_{2}+\int \frac{f}{x_{0}{ }^{\prime 2}} \omega d \tau\right\}
$$

$$
\begin{aligned}
& y_{1}=y_{0}^{\prime}\left\{\int \frac{\beta_{3}}{y_{0}^{\prime 2}} d \tau+\beta_{4}+\int \frac{f}{y_{0}{ }^{\prime 2}} \omega d \tau\right\} \\
& x_{0}^{\prime}=\sqrt{A} \sigma x \operatorname{cn}\left(w_{1}, x\right), \quad y_{0}{ }^{\prime}=\frac{V \bar{A} \sigma x}{\operatorname{cn}\left(w_{2}, x\right)}, \quad \omega=\int \Omega_{0}{ }^{*} x_{0}{ }^{\prime} y_{0}{ }^{\prime} d \tau
\end{aligned}
$$

where β_{i} are arbitrary constants.
Since the system (2) is invariant under the substitution $\tau \rightarrow-\tau, x \rightarrow x$, $y \rightarrow-y, x^{*} \rightarrow-x^{*}, y^{*} \rightarrow y^{*}$, the conditions of the periodicity of the solution can be written, in accordance with the symmetry theorem [3], as follows:

$$
\begin{align*}
& \psi_{1}=x^{*}(0)=0, \quad \psi_{2}=x^{*}(T / 2)=0 \tag{5}\\
& \psi_{s}=y(0)=0, \quad \psi_{s}=y(T / 2)=0
\end{align*}
$$

It can be shown that conditions (5) will be satisfied if $J_{12} \neq 0, J_{34} \neq 0$ and

$$
J_{m n}=\left[\frac{D\left(\psi_{m}, \psi_{n}\right)}{D\left(\beta_{m}, \beta_{n}\right)}\right]_{k=0}
$$

Equations (5) can be written in the explicit form as follows:

$$
\begin{aligned}
& x_{1} \cdot(0)=\frac{\beta_{1}}{\sqrt{A} x x^{\prime 2} \sigma}\left\{x^{\prime} M\left(x, x^{\prime}\right)+x^{\prime 2}-x^{2}\right\}-\beta_{2} \sqrt{A} x x^{\prime} \sigma^{2}=0 \\
& x_{1} \cdot\left(\frac{T}{2}\right)=\frac{\beta_{1}}{\sqrt{A} x x^{\prime 2} \sigma}\left\{3 x^{\prime} M\left(x, x^{\prime}\right)-1\right\}+\beta_{2} \sqrt{A} x x^{\prime} \sigma^{2}=0 \\
& y_{1}(0)=\sqrt{A} \beta_{4} x^{\prime} \sigma=0 \\
& y_{1}\left(\frac{T}{2}\right)=-\frac{2 \beta_{3}}{\sqrt{A} \sigma^{2} x^{2} x^{\prime}} M\left(x, x^{\prime}\right)-\sqrt{A} \beta_{4} \sigma x^{\prime}=0 \\
& M\left(x, x^{\prime}\right)=E(x)-x^{\prime 2} K(x)
\end{aligned}
$$

and the latter relations yield

$$
\begin{aligned}
J_{12} & =2 \sigma\left[x^{\prime}-M\left(x, x^{\prime}\right)\right] \neq 0, \\
J_{34} & =\frac{2}{\sigma x^{2}} M\left(x, x^{\prime}\right) \neq 0
\end{aligned}
$$

This means that the system (2) admits the new family of periodic solutions of the problem in question.

REFERENCES

1. Arzhanykh, I. S. : On equations of motion of a heavy solid about a fixed point. Dokl. Akad. Nauk SSSR, Vol. 97, № 3, 1954.
2. Vagner, E. A. and Demin, V. G. On a class of periodic motions of a heavy body about a fixed point. PMM, Vol. 39, No 5, 1975.
3. Demin. V.G., Motion of an Artifical Satellite in a Noncentral Gravity Field. Moscow, "Nauka", 1968.

Translated by L. K.

