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The equation of motion of a heavy solid with a fixed point is transformed, us- 
ing isothermal coordinates on the inertia ellipsoid, to the equations of plane 

motion of a fictitious material point. The Poincark method of small parameter 
is used to prove the existence of a new family of periodic solutions of the pro- 

blem in question. It is assumed that the solid differs Little from a solid with dy- 
namic axial symmetry. 

Let us consider the motion of a heavy solid about a fixed point. We denote by p1 
q, and r the projections of the angular velocity of the body on the principal axes of 

inertia; a, 8, and P are the direction cosines of the vertical: A, B and C 
are the principal moments of inertia: % b, and c are the coordinates of the center 
of gravity in the moving coordinate system. The Lagrangian 

(1) 
L = ‘/a (AP’ + B? + Cra) - mg (au + b@ + 49) 

of the problem does not contain the angle of precession 9, and this makes it possible 
to transform the equation of motion using the Routh method and a cyclic integral 

t?L/atp’= Aa (Ifa -I- Wcos cp) + BB (qq3 - O’sin cp) + Cy (9”~ + rp’)=f 

Here f is an arbitrary constant, cp and 9 are the angles of self-rotation and 
nuta tion, respectively. 

The Routh function can be written in the present case in the form [ll 

R =Ra-kR~-l-Ro 

-!- I) R,= 2 I 
~p’w (Aa2 4 Bps) - 2tpYYCy (Au cos cp - f@ sin VP) + 

83 
1 
~fAcoas~+Bsinl~)-_iAacOsg,- BB sin (#Is]} 

B1 =i fo [cp’Cy -F_ 0’ (Au cos ‘p - Bfl Sin Cp)l 

Rr = -mg (aa -l- b6 i- CV) -‘ItiD 

where IJ% denotes the disturbance from the fixed point to the tangent plane of the in- 
ertia ellipsoid 

I)-” = At-G + Bps + Cyz 
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568 Motions of a heavy solid with a fixed point 

Next we shall carry out two coordinate transformations, one after the other. First we in- 
troduce the isothermal coordinates u and 9 on the surface of the inertia ellipsoid 

using the formulas 

sn u dnucns 
cp = Arc& cn u sn s * 0 = arc cos an s 

in which the modulus of the elliptical functions of the argument u is k = [(A 

-B)C / (A - C)Bf”* and the elliptical functions of the argument S depend on 

the auxilliary modulus k’ = (1 - k2)“p. The next coordinate transformation is given 

by the relations u $ 

z = L&(u)du, 
s Y =- Pz(a)ds s 
0 0 

p12 (u) = A sna u + B cna u, ~~2 (.s) = & (A - i3V2 sna s) 

The Routh function can be written in the new variables in the form 

A= & (Ak2 sn2 u + Bk2 a@ u sns s + C dna u ens a) 

2 

v2(s)=Ccn~s-k~(A--BB)~ 

h1 @) = m u cn u dn U, ha (s) = sn s cn s I dn s 

Next we transform the equations of motion 

taking into account the kinetic energy integral 

in which the function U is defined by the second term of (I) written in the new var- 

iables, and h is a constant. 
Introducing now a new regularizing variable with the help of the relation dt = 

idr, we obtain the following system of equations of motion 

W W 
(2) 

2”---fs2y’=t-Y&“, y”ffs2X =ay 

Q = Pl (u) Pz (s) 1 {v2@Q3$q+VI(Y) $[+4$]} 
f2 

h- $$-(aksnu+bkonusns+cdnucns)-T 1 
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where prime denotes differentiation with respect to a. 
In this manner we hatave reduced the equations of moffon of a solid to a fourth order 

system describing the motion of a fictitious material point in a plane, under the action 
of potential and gyroscopic forces. 

The transformed system admits the Jacobi integral 

x’= -t_ $2 = 28 

Next we prove the existence of and construct the periodic solntions of the system (Zkus- 
ing the Poicark’s small parameter method. Expanding the function P into trigonomet- 

ric series we confirm that it is of the order of k*. Assuming the quantity f to be 

arbitrary and 63 = kaP*, we can use the Poincarks method to establish the 
existence of a new family of periodic solutions of the problem using the modulus k as 

the small parameter [2]. 
Setting k 0 S we obtain from (2) the following simplified system 

(4) 
av0 aon = r, avo 

0 Yo” = - 3Yo 

ViJ=fh- mgc) ( ot?sz --+she -$!! ) 
Multiplying both parts of (4) by Q’ and I/~ respectively, and integrating, we obtain 

% ‘2=2(h - mgc) co@ $+- + c, 

YiP =2(h-mgcf sll~ 210 
JfA +c2 

Here c, -t- G = 0, which fobllows from the Jacobi integral (31. 
If the arbitrary constants h and Cl are restricted by the conditions h _ mgc > 0, 

and CI < 0, the system (4) admits the following solution 

%a== (~02 --‘%)/A~, . u = 12 (h - mgc) / A]"" 
Wi = u (z -Zi), i= i,2 

with the period T = 4a’“R (x& 
The system of differential equations in its first order appro~ma~o~ 

2 
XI”- A (h - mgc) 

( 
sin2 - - cos2 

TX 
-&) 21= j!Jpyo 

yx”- 4th - mgc) 
( 

SF fi -f- ehn -J&- 
> 

gt = - f&*~* 

where Q,* is the value of the function Q* at k = 0 has the solution 
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where & are arbitrary constants. 
Since the system fZl is invariant under the sub~~~t~~ a -) -‘& 5 -+ % 

?Y --, --y, 2’ -+ --CC’, y’ -+ II’, the conditions of the periodicity of the solutio>n can be 
written, in accordance with the symmetry theorem [3], as follows: 

It can be shown that conditions (5) will be satisfied if ‘Tta # 0, Jsa # 0 and 

Equations (5) can be written in the explicit form as follows: 

and the latter relations yield 
Y,, = 2o fx’ - i% (Xx, X‘II # 0, 

This means that the system (2) admits the new family 
blem in question. 
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